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THE RESTRICTIONS OF THE PARAMETERS OF CAVITATIONAL FLOW* 

I.G. NESTERUK 

The stability principle is used to study the admissible values of the 
physical parameters defining cavitationalflow. An example is given of 
a non-stationary flow for which cavitational flow is possible only up 
to a certain instant. The restrictions on the cavitational flow parameters 
are studied in the light of surface-tension effects. For different 
Weber numbers we calculate the size of the cavitational cavity behind 
a cone in the flow of weightless fluid for zero cavitation number. 

The symmetric inviscid flow past a body of ideal incompressible heavy fluid with jet 
separation is reduced to the following boundary value problem for the disturbed flow potential: 

Here, XX is the surface of the cavitator, X, in the free surface, o,Fr are the cavitation 
and Froude numbers, R&f) is the width or radius of the cavern for the plane or axisymmetric 
case respectively; the axis of symmetry z coincides with the velocity direciton at infinity 

F, (0. 
It is very difficult to study the non-linear boundary value problem (0.1) with a non- 

stationary free surface. In particular, there is as yet not exhaustive study of the values 
of the physical parameters 0, Fr, V,, defining the flow, for which a solution exists and is 
unique (in the non-stationary casethe cavitation number and V, are functions of time, and the 
unique solvability of (0.1) poses even greater difficulties). 

Results concerning plane steady flow are generalized in /l-3/. For this case, the apparatus 
of the theory of functions of a complex variable is used; as a rule, the solution is linked 
with the constants, chosen in the plane of the parametric variable. It is difficult to find 
the connection between these constants and the physical parameters (numbers (T, Fr, and the 
cavitator geometry) because a system of non-linear equations has to be solved. 

Though a lot of attention has been paid to symmetric plane steady cavitation flows of a 
weightless fluid with fixed points of jet convergence, some questions are still unanswered. 
For instance, in the case of a wedge of unrealizable flow with 060, or for a body with a 
negative derivative with respect to the coordinate of the cavitator thickness at the jet 
convergence point R,, we do not know why negative cavitation numbers of small modulus are 
observed experimentally, whereas the results of /3/ reveal the existence of a solution for a 
body of any shape with any cavitation number a>--1. 

By linearizing problem (0.1) in the case of a thin cavitator or cavern, we can greatly 
simplify the solution and the study of problems of existence. In particular, it was shown in 
/4-6/ thatsteadyplaneflowpastawedgeofascendingheavyfluid is only possible for cavitation 
numbers which satisfy the condition o>,om(Fr)>O, the minimum cavitation number o,,, being a 
function of the Froude number and the cavitator shape. The limiting shapes of caverns behind 
point nozzles were studied in /7/. The minimum cavitation numbers were calculated in /8/ for 
axisymmetric nozzles, and it was shown that, behind bodies with a negative derivative of the 
radius, at the jet convergence point (B,<O), there form,evenin weightless fluid, stationary 
caverns with neqative e, though here a>,~, (the value of B,,, is negative and depends solely 
on the cavitator shape). In particular, for 0=0 behind a body with Z?*<O, a cavern of 
finite length is formed. It appears that the same conclusions can be drawn in the plane case. 

1. The stability principle and constraints on the cavitation flow para- 
meters. The study of the admissible parameter values defining cavitational flow can be 
illustrated by the example of the flow of a weightless fluid past a thin cone. The solution 
of the equation of the first approximation for the cavern radius R(x) may be written as /8/ 
0% is the tangent of the semi-angle of the cone) 

R2 = a.?/(Zln E) -I- 2R4 xl- 1 
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All the lengths here are referred to the radius of the bottom cut of the cone. The small 
parameter E is the characteristic value ofthederivative of the radius with respect to the 
coordinate. In particular, we can put e= RI. 

For o> 0, Eq.Cl.1) describes caverns of finite length, since (a/(% E))< 0, R4>0. The 
unrealizability of negative cavitation numbers can be explained by starting from the stability 
principle for problems of mathematical physics, according to which small variations of the 
defining parameters must lead to small variations of the solution. 

In the case o<O, R,>O, this principle is violated for the solution of (1.1). For, 
in this case (1.1) describes caverns of infinite length, and by choosing sufficiently large x, 
we can arrange for the difference in the solutions to be as large as desired, even if the u1 
and u2 defining them are infinitely close. 

This principle can explain the constraints obtained in /8/ onthecavitation number u > U, 

(u,,(O) for axisymmetric bodies with R4<0 and the constraints described in /4, 8/ in the 
case of heavy fluid flow. It should be said that Kirchhoff's solution /9/ for the steady 
plane flow of a weightless fluid past a plate with u = 0 is also an example of an unstable 
solution, since, with values of cavitation number infinitely close to zero, the cavern has 
restricted size, i.e., differs as much as desired from Kirchhoff's infinite cavern. 

In short, the stationary solutions for wedges and cones (R, > 0) with infinite caverns 
(u = 0) are of merely theoretical interest, since the instability in question can lead to the 
solutions being capable of giving different results at u = 0, though they describe the cavern 
shape fairly well for u>O. This may explain the fact that, with u = 0 and as x-+00, 
(1.1) gives the asymptotic behaviour 

which is not in accord with the well-known Levinson-Gurevich-Yakimov asymptotic behaviour 
/lo-12/. 

2. Restrictions in the non-stationary case. A similar principle of stability 
can also be used in the non-stationary case: if, in a process with continuously varying 
functions o(t), V,(t) an instant te occurs when the cavern changes its shape with a "jump" 
(e.g., from finite to infinite), then the flow can be longer be realized when t> t,. Since 
the cavern shape in the non-stationary case depends, not only on the running values of the 
parameters, but also on the prehistory of the flow, we can speak of restrictions on the 
parameters in this case only in the context of a specific process. 

As an example we consider the axisymmetric flow past a thin body of ascending fluid with 
constant velocity at infinity and linearly decreasing cavitation number u(t) = o(O)-aa,t. If 
we use the expressions in /13/, the solution of the non-stationary equation of the first 
approximation takes the form 

Rz(~,f)= &$$ + +&-~'*) + 2R.s + 1 (2.1) 

Simple analysis shows that, when the parameter a, satisfies the condition O<a,< FrSa, 
an instant tc occurs such that, for t> t, , the cavern described by Eq.CZ.1) becomes infinite, 
though before this instant the size of the cavity is bounded. We can calculate the critical 
value ofthecavitation number u, = a(&). For instance, in the case when R, = 0, 

a, = [ - 6 (Fr-* - a,# In e]". 

In this case, therefore, a reduction of the cavitation number to a value less than u, 
is impossible. with other combinations of the parameters Fr and a,, it is not possible to 
indicate processes in which cavitational flow occurs only up to a certain instant, and then 
becomes impossible. For instance, in the case of a weightless fluid, it follows from Eq.(2.1) 
that, as the cavitation number falls (a,>O)the caverns will have finite size with both positive 
and negative running values of the cavitation number. As the cavitation number increases, 
the cavern size falls continuously. 

It follows in particular from what has been said that non-stationary flow of weightless 
fluid past a cone is possible for negative cavitation numbers, though in the stationary case, 
for bodies with R,> 0, the condition U> 0 must hold. 

Our example does not exhaust the cases of axisymmetric flow for which non-stationary 
cavitational flow is only possible up to a certain instant. For a general study of this 
topic, the expressions of /13/ for the general solution of the equation of the first approxi- 
mation may be used. The critical values of the parameters of axisymmetric cavitational flows 
may be refined by using the equation of the second approximation /14/. 

3. The influence of surface tension. Some results concerning the unique solvability 
of the plane problem of steady cavitational flow, inthecontext of capillary effects, may be 
found in /3/. Here we take the axisymmetrio case with R4> 0. The shape of a thin axisymmetric 
stationary cavern when surface tension is taken into account is described by theequation/15/ 



(3.1) 

in which the prime denotes derivatives with respect to the coordinate; all lengths are referred 
to the radius of the bottom cut of the cavitator R,':x' is the surface tension. 

In cases of practical interest, Weber's number We is extremely small, so that we can 
leave only the leading term 1/R in the braces and obtain, for a weightless fluid, 

In E d2Rajdxa - We IR = f~ (3.2) 
After reducing the order of Eq.(3.2) and integrating, we arrive at 

(dRBldx)a = a - bR - cR2 (3.3) 

tz=4R+2~, b=-z’ 2s 
c=-= 

In the centre section of the cavern the left-hand side of (3.3) is zero, so that when 
a> 0 the maximum cavern radius R, is given by 

&Z = 1- 2a-1RbZ In E + 2am1 we (2 - R,} (3.4) 

The presence of non-zero surface tension when a>0 leads to a reduction in R,, since 
the first two terms on the right-hand side of (3.4) give a value of the maximum cavern radius 

&>I when We = 0. This conclusion agrees with the results in /15, 16/. 
It follows from (3.3) that the cavern shape is symmetric about the centre section, and 

after integration the following dependence can be obtained on the piece from the jet convergence 
point (x = 0) to the eentre section: 

r = c-1 1/a - b - c - 1/2~-=1* l/A" - (2Rc + b)2 f + l&f* x (3.5) 

{arcsin [(2c + b)/A] - arcsin [(2Re -j- b)/A]}, A= f4ac f b2 

When obtaining Eqs.(3.3), (3.5), the standard boundary conditions at the jet convergence 
point: R = 1, R’ = R,, have been used. 

The stability principle enables us in the case A,> 0 to analyse the admissible values 
of the parameters D and We, defining the flow. It follows from (3.3), (3.5) that the cavern 
has limited size, continuously dependent on the parameters, in all but the case when polynomial 

f(R) on the right of (3.3) has no root for R > 1 (in this case the cavern becomes infinite). 
Analysis of the polynomial f(R) shows that, for cr> 0, the stability is not destroyed 

for any value of the Weber number. For a< 0 the stability is destroyed if We< W, = --CT f 

If 2oR;Z In E, so that cavitational flow is possible in this case only for numbers We> tvlr*. 
When (T = 0 the cavern becomes infinite only if We = 0; all other values of the Weber 

number are admissible. The expression for the cavern radius may then be obtained from (3.3): 

X= & (z” - 3alz) - z (4R42 3al) 

z = J/al - bR, aI = 4 (Rp2 - We/In E) 

(3.6) 

Computations from (3.6) for a cone with R,=O.‘i (it was assumed that parameter E is equal 
to the ratio of R, to cavern length 

5.10-a 
805 6.3.101 1,2.10' 2,8.10" 

III 1.4 69 945 

reveal that, surface tension present, caverns finite size possible behind 
cones even zero cavitation 
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ASYMPTOTIC SOLUTION OF BOUNDARY VALUE PROBLEMS 
FOR WEAKLY PERTURBED WAVE EQUATIONS* 

A.L. SHTARAS 

A method that is asymptotic with respect to the small parameter e is 
proposed for solving boundary value problems for weakly linear equations 
with partial derivatives. Linear travelling waves, defined when r&O, 
t&O and which only interact on the boundary z=O, are the solution of 
the unperturbed problems. An asymptotic solution which is uniformly 
suitable for t,r=o(e-1) is constructed for the perturbed problem using 
the method of averaging along the characteristics. A model problem of 
gas dynamics is considered - the problem of the motion of a piston in a 
semi-infinite tube. 

The problemsconsidered in this paper are usually solved by the method 
of regular expansion with respect to the parameter e /l, 2/. However 
this method leads to secular terms appearing in the asymptotic solution, 
which makes the latter unsuitable for values of the arguments t,~= O(E-~), 
But large values of t and t are more interesting when analysing weakly 
linear waves, since the non-linear, dissipative and other factors, which 
are usually disregarded iii the simplest linear models, begin to develop. 
Asympotic methods enabling us to solve Cauchy's problem fox the equations 
considered below were proposed in /3-6/. Boundary value problems of the 
"resonator" type were solved in /7, 0/. The technique proposed previously 
is modified below for problems in which r&O.. 

1. In practice, problems in which two travelling waves weakly interact are the ones most 
frequently analysed. Suppose the behaviour of these waves is described by problem 

rl+r,=ehfir,s,e], s,-sS,=eh[r,s,el, t>o, I>0 w 
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